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Abstract

Person re-identification (re-ID) is the problem of identifying the same per-
son in multiple cameras. This is a non-trivial problem, that is confounded
by non-overlapping field of view, lighting differences, occlusion, variation in
poses and different camera viewpoints. Current person re-ID systems perform
well on specific datasets but experience large performance drops when trained
and tested on a different dataset. This report describes a new method to
improve the robustness of person re-ID models. The proposed method gen-
erates new backgrounds using a generative adversarial network which allows
person re-ID models to be trained on larger and more varied datasets, there-
fore improving robustness. Individual identities from the original dataset are
recreated in new scenarios with corresponding labels, this allows person re-ID
networks to utilise supervised learning on the generated data. Variations of
the proposed method provide significant control over the generated images,
from maintaining high similarity between the generated identities and their
respective original (same pose) to generating the identity in any new pose
while still maintaining significant similarities.
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1 Introduction
Cameras are a good way to deter crime and also help track people of interest. With
the growing amount of data captured by cameras, manually tracking people has
become exceptionally time consuming. Tracking one person is a difficult task, sim-
ultaneously tracking multiple persons across multiple scenes is orders of magnitude
more difficult. Conventional object trackers are not effective in tackling this problem
[1].

Person re-identification (re-ID) is the problem of identifying the same person
across multiple cameras. For example, in a train station, a camera captures an
image of a person waiting on a platform. Later, a second camera located in a train,
captures an image of the same person on-board the train. Identifying that this is
the same person in both images is a form of person re-ID.

Problems include non-overlapping field of view, lighting differences, occlusion,
variation in poses and different camera viewpoints. Biometric markers such as facial
features are not available due to low resolution. The only assumptions are that
people will wear the same clothing in different sightings [2] and their body type
(height and build) will remain the same.

State-of-the-art person re-ID systems, such as GLAD [3] and PDC [4], can achieve
rank-1 accuracies of roughly 90% when tested on a specific dataset but experience
severe performance drops when trained and tested on a different dataset [5]. This
is due to the limited scale of datasets as they do not provide realistic nor sufficient
data to allow for generalisation [5].

Gathering and annotating real data to create significantly large and varied data-
sets can be time consuming and costly. Therefore, the currently available datasets
are small and homogeneous.

1.1 Aims and Objectives

The aim of this project is to generate new, hard cases to improve the robustness
of current re-ID systems. Generating realistic images allows for current datasets to
be extended and thus the current re-ID systems can be trained on more samples,
improving the performance. One of the hardest aspects of generating re-ID images
is labelling them. It is important to be able to generate realistic images of the same
people as are already in the dataset and not a new label. This is to enable supervi-
sion during training of re-ID systems which leads to higher accuracies compared to
unsupervised training.

The main objectives for the project are the following:

• Design a generative adversarial network to generate labelled images of existing
persons with new backgrounds.

• Design a GAN to generate labelled images of existing persons with new poses.

• Expand a person re-ID dataset by adding images generated by the GAN.

• Improve on the person re-ID network baseline (ResNet [6]) by using the ex-
tended datasets.
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2 Literature Review
This section is an overview of generative adversarial networks (GANs), both in
general and specific re-ID GANs, current re-ID systems and information regarding
re-ID datasets.

2.1 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [7] is composed of two separate networks,
a generator network and a discriminator network. The generator creates samples
that mimic the training data while the discriminator determines whether a sample
was generated (fake) or from the training data (real). Figure 1 shows how the
generator and discriminator are connected.

By analogy, the generator can be viewed as a forger and the discriminator can
be viewed as a detective. The forger is trying to forge paintings but at the start
isn’t very good. The detective can easily spot differences between the real paintings
and the fake one. Eventually, the forger improves his skill and can produce better
fake paintings. It is now more difficult to spot the difference between real and fake
paintings and so the detective must improve his skill. This can go on until the
detective becomes better than humans at detecting fakes and the forger can create
paintings that are indistinguishable from the real paintings to humans.

The generator G maps a random noise vector z to match the distribution of the
training data. The discriminator D distinguishes between real and fake data. The
objective function can be written as:

LGAN(G,D) = Ey[log(D(y)] + Ez[log(1−D(G(z))] (1)

Generator

Discriminator

GAN loss

Noise vector Generated
image

Real
image

Real
or

Fake

Backpropagation

Data Flow

Figure 1: A diagram of a generative adversarial network (GAN) training to generate
images of handwritten digits.

2.2 Pix2Pix

Pix2Pix [8] showed that conditional GANs [9] could generate realistic images. Con-
ventional GANs learn to map an output image from a random noise vector whereas
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conditional GANs learn to map an output image from an input image and a random
noise vector. Pix2Pix was not tuned to be application specific and was shown to
perform well on diverse sets of data.

Pix2Pix’s generators utilise a U-Net [10] architecture. Generally speaking, this
implies multiple layers that perform down sampling followed by multiple upsampling
layers. This creates a bottleneck layer that has a compressed representation of the
data in the middle. But importantly these layers contain skip connections, which
allow more information to surpass the bottleneck.

What makes this a conditional GAN (cGAN) is that the input x for the generator
is also used as one of the inputs for the discriminator. Thus: the objective of the
cGAN is:

LcGAN(G,D) = Ex,y[log(D(x, y)] + Ex,z[log(1−D(x,G(x, z))] (2)

Where G and D are the generator and discriminator, respectively, and x, y and
z are the input, output and random noise vector, respectively.

The noise input for the generator was created using dropout. The authors note
that this is an area that could be further improved as the output was only slightly
stochastic and is therefore not capturing the full entropy of the conditional distri-
bution.

For the discriminator they developed PatchGAN, which restricts the discrimin-
ator to only model high frequency components then in addition use an L1 loss for
the low frequencies.

With Pix2Pix being non-application specific the results can be described as ac-
ceptable. Figure 2 shows that Pix2Pix can generate sharp images. It is still far from
perfect, especially generating the background/sky.

Figure 2: Example of the results from Pix2Pix when generating facades. Reproduced
from the original paper [8].
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2.3 CycleGAN

CycleGAN [11] became famous for its impressive results with diverse sets of im-
ages. CycleGAN learns to translate between domains without input-output pairs.
This is a powerful tool as it does not require paired input-output examples to learn
this translation but utilises supervision based on sets (set of images from different
domains). It also aims to produce cycle consistent translation meaning after trans-
lating image x to image y, a reverse translation of image y will yield image x. This
is visualised in figure 3.

Figure 3: An illustration of CycleGAN reproduced from the original paper [11]. (a)
shows the relationship between the two generators G and F , the two domains X and
Y and the two discriminators DX and DY . (b) shows the forward cycle-consistency
loss and (c) shows the backward cycle-consistency loss.

At its core, CycleGAN utilises two generators, G: X → Y and F: Y → X, and
two adversarial discriminators, DX and DY . DX discriminates between real images
and generated images in set X while DY discriminates between real images and
generated images in set Y. To incentivise the aforementioned cycle consistency, a
cycle consistency loss is introduced.

Some examples of what CycleGAN can do are shown in figure 4. In the column
on the right, CycleGAN was trained to change a horse to a zebra and vice versa. The
output clearly captures the style of each set and generates fairly realistic images.
The left column shows the style transfer from a Monet painting to a real photo. This
also shows that CycleGAN can create a mapping between two styles and translate
images between them.

The authors note that they were unsuccessful in generalising the transformation
between styles of different geometric sizes or extreme geometric changes.
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Figure 4: Example images of CycleGAN reproduced from the original paper [11].
The left column shows the transformation from a Monet painting to a realistic photo
and vice versa. The right column shows the transformation from zebras to horses
and vice versa.

2.4 SPGAN

Similarity Preserving cycle-consistent GAN (SPGAN) [12], aim to generate new im-
ages of people from a labelled dataset in the style of a different unlabelled dataset.
There are two requirements for this to work, the ID in the new generated image
should accurately represent the same ID as before the transformation and the ID
being transferred should be dissimilar to other IDs in the unlabelled dataset. This
transformation is unsupervised but permits re-ID models to be trained using super-
vised feature learning methods on the generated data.

SPGAN integrates a Siamese network [13], which constrains the learning of the
mapping function, and CycleGAN, which learns the mapping between the domains.
When training, there are two objectives for the two CycleGAN generators, represen-
ted by the functions G and F . First, given a source image xS and target image xT ,
the network is encouraged to pull G(xS) and F (xT ) close to xS and xT respectively,
as these image pairs contain the same identity. The second objective for the network
is to push G(xS) and F (xT ) away from xT and xS respectively, as these image pairs
contain different identities.

Figure 5 shows a few examples of SPGAN in action. It is difficult to see a large
difference in appearance but as the two domains are fairly similar this would be
expected. To the human eye it is clear that the transformation does not change the
underlying ID. Under closer inspection, the transformed images are slightly blurry.
SPGAN did show a performance improvement of person re-ID compared to a direct
transfer approach. Where a direct transfer approach uses a network trained on one
dataset and not changed before being applied to the target dataset. As expected, a
supervised approach still performs significantly better.
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Figure 5: An example of SPGAN changing the style of images between two datasets,
reproduced from the original paper [12]. Row (a) shows the original images. Row
(b) shows the output from SPGAN after the transformation.

2.5 CamStyle

Camera style (CamStyle) [14] adaptation tries to minimise the disparities between
different camera images. Two versions are proposed, the vanilla version which works
well on small camera networks (few cameras) and the full version which can be used
on all camera networks. The vanilla version tackles the problem of overfitting which
is more common in smaller networks due to the limited data. The full version tries
to mediate the transfer noise caused by non-perfect modelling due to occlusion and
detection in the data.

First, CycleGAN is used to train a mapping between camera styles of each camera
pair in a system. This results in models that can generate training images with the
same ID but in a different camera style. The vanilla version of CamStyle merges
the generated images with the real images to train a re-ID CNN model based on
ResNet-50 [6]. The full CamStyle version applies label smoothing regularisation
(LSR) [15] to the generated images from CycleGAN. By assigning less confidence to
the labels of the generated images the transfer noise decreases.

CamStyle produces realistic images with only slight blurring as can be seen in
figure 6. The full version of CamStyle showed a significant and consistent increase
in person re-ID accuracy. The vanilla version proved to increase accuracy for small
camera networks (few cameras).

Figure 6: Example images of camera style transformation using CamStyle. Repro-
duced from the original paper [14].
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2.6 Pose Transfer

Pose transfer [16] is the process of generating a new image of a person with a changed
pose. In other words, a person’s pose can be modified to match the pose of a given
skeleton [17]. Generating images with multiple poses allows re-ID datasets to be
extended and could result with the ability to learn more robust re-ID models.

A conditional GAN is used with inputs of an image of a person and a skeleton
image. With the ground truth being the image of a person with the corresponding
pose of the skeleton image. This, by itself, is not very useful for re-ID purposes as
the person in the generated image does not necessarily resemble the original per-
son. Thus, the authors proposed a “guider module” to ensure the ID characteristics
remain the same. The guider module is pre-trained on the dataset utilising super-
vised learning to distinguish between classes (or based on triplet loss). Then, when
training the GAN, the guider module is fixed and works alongside the discriminator.

As can be seen in figure 7, the guider module helps to produce clearer and overall
more realistic images. It is nonetheless far from perfect. One of the most noticeable
things wrong with the generated images are the missing feet. Less noticeable but
important transformation errors include the head shape, colours of clothing, patterns
in clothing, limbs deformed or missing and general blurring. Despite these errors,
pose transfer can provide a significant improvement over a baseline approach and is
even comparable to state-of-the-art methods.

Figure 7: Example images of pose transfer, reproduced from the original paper [16].
The leftmost column contains the original images and the two column pairs, "No
Guider" and "With Guider", contain the output transformation given two slightly
different poses and the original image as input.

2.7 Background Bias

For ideal re-ID systems, the background of an image should not provide any features
for classifying individuals. However, Tian et al. [18] have shown that deep learning
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re-ID models rely too much on background information. A model with a bias to
backgrounds is a severe problem and solving this could lead to more robust systems.

Tian et al. propose two different solutions to eliminate background bias. Both
of which require separating the foreground from the background. They introduce a
deep neural network for this task.

The first solution simply replaces the background with the mean background
of the dataset. Training a deep learning re-ID model on these images forces the
network to focus on the foreground as there is no information in the background.
This, however, does not produce realistic images for the network to train on. The
second solution tries to alleviate this problem by replacing the background with a
random image. This provides more realistic images to train a deep re-ID model
while still removing the biased backgrounds.

Figure 8 shows examples of changed backgrounds. Examples in (b) are clearly
unrealistic but re-ID models trained on them perform only slightly worse than models
trained on the original images but neither perform well on images with a random
background. When models are trained the random background images they perform
well when tested individually on the original, the mean background and random
background images. There is only a slight drop in performance (2%) but the model
is more robust. The examples in (c) are more realistic than those with a mean
background but are is still a bit “off”.

Figure 8: Examples of changing the background, reproduced from the original paper
[18]. (a) are the original images. Images in (b) have a mean background and in (c)
have a random background.

2.8 Datasets

Re-ID models require large amount of data during training. Re-ID datasets should
also preferably contain sufficiently diverse images to allow models to generalise over
the whole re-ID problem. One of the main difficulties for re-ID is the cost of creating
these datasets [5]. Table 1 compares commonly used datasets and figure 9 shows
some example images from different datasets.

CUHK01 [19] has the fewest bounding boxes and the fewest identities of the
highlighted datasets in table 1. Due to the low number of samples, the highest
performing re-ID models does not generalise well [5].

CUHK03 [20] is a fairly simple dataset compared to others because it only
includes images from two cameras. This dataset has been used and tested extensively
and is a popular choice for model performance comparisons.

Market1501 [21] is similar in size as CUHK03 and DukeMTMC-reID. Import-
antly, the bounding boxes are detected using the Deformable Part Model (DPM)
[22] which provides a more realist setting compared to hand-drawn bounding boxes.
This is a commonly used dataset for re-ID training.
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DukeMTMC-reID [23] is slightly larger than Market1501 and CUHK03. It
has hand drawn bounding boxes. DukeMTMC-reID, Market1501 and CUHK03 are
frequently used for comparing re-ID model perfomances.

MSMT17 (Multi-Scene Multi-Time) [5] is significantly larger than the other
datasets in table 1. It is newer than the other datasets and thus has not been used
as much. MSMT17 uses Faster RCNN [24] to create the bounding boxes. It includes
cameras located both outside and inside while the other datasets contain cameras
either outside or inside.

Dataset CUHK01 CUHK03 Market1501 DukeMTMC-reID MSMT17
Bounding boxes 3,884 28,192 32,668 36,411 126,441

Identities 971 1,467 1,501 1,812 4,101
Cameras 10 2 6 8 15

Table 1: Comparison of well-known person re-ID datasets
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Figure 9: Examples of images from well known person re-ID datasets
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3 Design

3.1 Overview

The aim of this project is to develop a method to improve the robustness of person
re-ID networks. At the start of this project, several methods of how to accomplish
this goal were proposed and discussed, such as:

• Generating new images using inpainting for masked regions [25].

• Generating new images by predicting a slight variation in pose and background
based on next frame predictions [26].

• Generating new images by generating a new background.

• Generating new images by merging the upper and lower part of people’s bodies.

These methods have varying difficulty as high emphasis is placed on generating
an image of a person who is already in the dataset. Otherwise, labelling this new
image might not be possible, but is required for supervised learning.

Developing a method to generate a new background was chosen, as current per-
son re-ID models are biased on backgrounds [18] and no similar method had been
developed.

The first model proposed, model 1, is designed to generate a realistic image
with the same person but with a new background, from a source image. A simple
solution is to perform segmentation of the foreground and background and paste the
foreground over a new background image. This, however, creates a few problems. If
the segmentation is not perfect, e.g. part of the background is labelled as foreground
or vice versa, then the new image will be corrupted, as shown in figure 8. An
additional problem is the lighting and perspective differences that will result in the
new image being unrealistic. So, the idea behind model 1 is to take two sets of
images, with the same identities but different backgrounds, and train a generative
adversarial network (GAN) to learn a mapping between these two sets. Thus, model
1 is able to generate an image, with the same person as in the source image but in
the same style and with the same background as other images in the target domain.

Model 2, a modified version of model 1, utilises a person mask of the input image
as an addition to the source image. Examples of masks can be seen in figure 12.
This modification addresses the problem of blurry, and sometimes missing limbs, in
generated images from model 1.

Further modifications, resulted in model 3, which uses an output mask (mask of
the target image) in addition to the source image and input mask. This allows full
control over the pose of the person in the generated image.

Model 4 does not have any additional inputs, similar to model 1, but utilises
a novel foreground and background loss. This loss allows the model to generate
greater foreground detail and overall more realistic images.

The images generated can be added to the original person re-ID dataset, mak-
ing an extended dataset. All four models are tested and compared based on the
performance of a baseline re-ID network when trained on the respective extended
dataset.
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3.2 Model 1

Model 1 is designed to be an end-to-end solution that can generate an image of the
same person as in a source image, but with a new background and style from a
different domain. The two domains can be images from two different cameras from
a large person re-ID dataset, such as Market1501.

Model 1 is a GAN, which is composed of a generator network and discriminator
network. Figure 10 shows an overview of the GAN.

Given a simple person re-ID dataset with only two cameras, the sub-datasets
cameraA and cameraB can be created, each with images from one camera only. From
theses sub-datasets, image pairs can be created, with each image pair consisting of
an image from cameraA and an image from cameraB with the same person, i.e.
the same identity. Note, a one-to-one mapping does not exist so a single image
in cameraA can be paired with multiple image from cameraB as long as all images
have the same identity. Figure 11 shows how multiple images with the same identity
can make many image pairs. This means the underlying function of the mapping
between the domains is a multivalued function, i.e. there are multiple solutions
given a single input. Model 1 is trained on the paired images, but when the GAN
is trained, the only images from cameraA are necessary. Model 1 learns a mapping
between these two domains (cameraA and cameraB) and when trained, can generate
images in the style of images from cameraB with the same identity as a given source
image from cameraA. Note, the style refers to all differences between the domains, for
example, exposure, saturation and background. The model only learns the mapping
from cameraA to cameraB. This means, a separate model (same design) needs to be
trained to generate images for the other camera. Similarly, if there are more than
two cameras in the original person re-ID dataset, the same process applies, only
more models are needed to be trained.

When trained, model 1 can generate labelled images in the style of cameraB of
persons that do not appear in any images in cameraB but only in cameraA. Model
1 can also simply generate more image even if the same identity exists in cameraB.

Adding the generated images to the original dataset, allows person re-ID net-
works to be trained on larger and more varied datasets and thus improve their
performance.
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Figure 10: A diagram of model 1. This diagram shows the interaction between
the generator and discriminator during training. Notice this is a conditional GAN
which means the generator uses an image as input, instead of a noise vector, and
the discriminator also uses the input image as an additional input.

cameraA cameraB Image pairs

Figure 11: An example of how images with the same identity are paired together.

3.3 Model 2

Model 2 is based on model 1 but has a slight modification to improve the quality of
the generated images. The modification involves using a mask of the input image,
alongside the input images itself as input. The mask [27] is based on the specific
input image and provides information regarding the position of the person within
the image. Figure 12 shows examples of masks of Market1501 images picked at
random. A large percentage of masks are of low quality but model 2 can still use
them as a general guide.

The motivation of adding the input mask as an additional input is twofold. First,
this allows the model to more easily locate the person, especially their limbs, to then
generate a more accurate image. Secondly, as this project has limited resources,
which means no optimisation can be performed on individual models, this allows
the model to train more quickly as the location of the person is already given by the
mask.
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As discussed in detail in chapter 6, the generated images from model 2 occasion-
ally have more refined limbs but the overall quality is slightly worse.

Figure 12: Examples of masks [27] of images from Market1501.

3.4 Model 3

Model 3 is designed to generate images with the same identity as the input image but
with a specific pose. Similarly to model 1 and model 2, the generated image should
have a generated background and overall the same style as the target dataset. This
is accomplished by using an input image, along side an input mask and an output
mask. The input mask indicates where the person is in the input image, while the
output mask shows where the person is in the target image. A diagram of model 3
is shown in figure 13.

By using the output mask as part of the input to the GAN, the GAN will learn
the correlation between the output mask and the position of the person in the
target image. This leads the generator to generate the person in that specific pose
to minimise the L1 loss. After the GAN has been trained, the pose of the person
being generated can be controlled by adding the desired pose as the output mask.
This is further discussed in section 6.7.

As discussed in in chapter 6, the generated persons are more realistic than those
from model 1 and model 2. The generated background is also realistic, similar to
the other models.

Generator

Discriminator

L1 loss

GAN loss

Real
cameraA

Generated
cameraB

Real
cameraB

Real
or

Fake

Backpropagation

Data Flow

Input
mask

Outout
mask

Figure 13: A diagram of model 3 which uses an input of an image concatinated with
an input mask and an output mask.
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3.5 Model 4

Model 4 only uses the original image as the input, the same as model 1, but employs
a new loss function specifically designed for this problem. A diagram of model 4
is shown in figure 14. The proposed loss function is composed of two losses, the
foreground loss and the background loss. Note that the proposed loss has two
variations, the static version and the variable version, both described in detail in
section 4.6. Model 4 uses the static version, which generates the person in the same
pose as in the original image. The foreground loss calculates the absolute error
between the foreground of the original image and the foreground of the generated
image. This causes the person in the original image to be effectively "copied" in
the generated image but not the background. The background loss calculates the
absolute error between the background of the target image and the background
of the generated image. This forces the generator to generate similar background
as are found in the target dataset. The GAN loss is still present and affects the
whole image. As the GAN loss is feedback from the discriminator, it helps make the
overall image more realistic. For example, the exposure and saturation of images
in the target dataset might be different to original images. This means that the
foreground is not "copied" directly but changed to fit the target dataset. The GAN
loss also helps the generator merge the foreground with the background and to not
create an obvious boarder, known as a halo.

This design allows model 4 to be trained on unlabelled cameraB images, as the
identity of the target image is not used.

Note that the discriminator does not receive the full input image but only the
background of the image. This is to prevent the discriminator from easily determin-
ing the generated image as fake, as the input image and the generated image contain
the same identity.

Model 4 generates very realistic persons with a high level of detail. Results are
discussed in chapter 6.
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Figure 14: A diagram of model 4 which uses the proposed foreground and back-
ground loss, specifically the static variation. Note, the foreground loss utilises the
input mask and the background loss utilises both the input mask and output mask.
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4 Implementation
The initial strategy to improve the robustness of person re-ID networks is to generate
new images to be used, in addition to the original images, to train the person re-
ID networks. This, theoretically, allows the person re-ID network to generalise
more effectively and thus be more resilient to artefacts such as occlusion, noise,
view point change, background variations, etc. Figure 15 shows an overview of this
implementation process.

All the models are implemented in python using PyTorch [28]. The processing
is done through Amazon Web Services using an NVIDIA Tesla K80 GPU.

Person re-ID 
dataset

Training 
dataset GAN Generated 

dataset

Pr
ep

ro
ce

ss
in

g

Tr
ai

ni
ng

 G
AN

Ge
ne

ra
tin

g 
im

ag
es

Extended 
person re-ID 

dataset

Figure 15: Diagram of the Implementation strategy.

4.1 Data processing

First, the dataset must be split into a train dataset and test dataset. The Mar-
ket1501 was split 60:40, resulting with the test dataset containing 19,732 images
while the train dataset contained 12,936 images. In addition, a query dataset is also
provided in Market1501 containing 3,368 images, where there is only one image per
identity for each camera.

The training dataset is then split into multiple sub-datasets, each containing a
pair of cameras (represented as cameraA and cameraB). This process is made easier
with the DataSplit script, described in Appendix A.1. This produces a total of
15 sub-datasets. The dataset with camera 1 and camera 2 is denoted as c1c2, the
dataset with camera 1 and camera 3 is denoted as c1c3 and so on. Each of these sub-
datasets contains images with overlapping IDs and non-overlapping IDs. In other
words, this is when the same ID (person) exists in images from both cameras in the
dataset. For example, camera 1 has two images of “John” and camera 2 has three
images of “John”, then these images have overlapping IDs. These images are very
important as they allow supervision during GAN training, to maintain the same ID.

DataSplit uses the training dataset as an input and outputs one main folder
containing four subfolders; “A”, “B”, “train” and “test”. Folder “A” includes all im-
ages from cameraA and similarly folder “B” includes all images from cameraB. The
“train” folder is composed of images constructed with image pairs from cameraA
and cameraB with the same ID. This simplifies the input used for the GAN as one
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file (PNG) is made of an input or source image (cameraA) and a target or ground
truth image (cameraB). To ensure a large GAN training dataset, all combinations
of image pairs between the two cameras, with the same ID, are created. This is
visualised in figure 11. To guarantee high similarity between the same person in
both images, only the images in the same sequence are paired together. This lowers
the likelihood of significant changes to people’s appearance, as different sequences
signify time discrepancies. Table 2 shows the number of training images available to
train the person re-ID network and the total number of test images for each training
set.

4.2 Model 1 (Base)

The first model proposed is an end-to-end solution based on the Pix2Pix architec-
ture. The goal is to transform an input image from a source dataset (cameraA) to a
target dataset (cameraB). Pix2Pix was chosen as the base GAN as it performs well
with diverse data, trains quickly compared to CycleGAN for example, and is well
suited for this objective. The Pix2Pix implementation by the original authors [29]
was used with the default hyperparameters: an Adam [30] optimiser with a learning
rate of 2e-4 and a beta1 of 0.5 and batch size of 1. The GAN was trained for 10
epochs. Optimising these parameters would likely result in better performance but
that would require resources beyond those allocated for this project.

4.3 Training the GAN

The GAN is designed to generate images that mimic a specific camera using images
from another camera. This means a total of six GANs are to be trained, for cameras
1 to 6. To increase the chances of generating realistic images, the largest training
datasets should be picked. Table 2 shows the size of the training datasets available.
The dataset c5c6 is the largest and thus camera 5 images are used to generates
images for camera 6. Similarly, camera 6 images are used to train the GAN that
generates images for camera 5.

Table 3 shows which camera pair was picked for each camera to be generated
and further information such as the total number of real images to be trained on.
These are the images where there are overlapping IDs and are also in the same
sequence. The squence refers to the time period the images were taken. The total
number of generated images comes from the “test” dataset, shown in table 2, where
the images only include IDs found in cameraA and not found in cameraB with the
same sequence, in other word non-overlapping IDs in the same sequence. Lastly,
the table shows the number of generated images with IDs that do not appear in the
target camera at all, even in a difference sequence.

The motivation behind separating the generated images into two, “all” and “new
IDs”, is twofold. Using all the generated images, “all”, allows for a larger training
dataset to be used by the person re-ID network and should lead to higher perform-
ance. Acknowledging that the generated images are not perfect, means the generated
images could corrupt the learning process especially when a real image exists for a
given input. Thus, using only the generated images with non-overlapping IDs, “new
IDs”, limits the possibility of corrupting real identities and rather only adds value as
it is introducing new IDs for a specific camera. Note that these are not completely
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new identities being created but rather transferred from cameraA, where it exists,
to cameraB, where this identity was not captured.

c6 c5 c4 c3 c2 c1
c1 (3151, 1715) (2448, 1686) (2408, 1308) (1561, 1678) (1008, 1736)
c2 (6175, 567) (4921, 428) (305, 1584) (6280, 75)
c3 (13906, 730) (10368, 407) (492, 2531)
c4 (809, 826) (875, 785)
c5 (14133, 695)
c6

Table 2: The size of different datasets available when pairing two cameras together.
Where c1 denotes Camera 1, c2 denotes Camera 2, etc. Each camera pair cell
denotes the number of training samples and testing samples available (train, test).
c5c6 produces the larges training dataset but the testing dataset is on the smaller
side.

Camera
pair

Camera
generated

Real
images

Generated
images

Generated
images (new ID)

c1c6 1 5262 2464 288
c2c3 2 4416 820 769
c3c6 3 5952 261 27
c1c4 4 2937 1308 1250
c5c6 5 5583 606 355
c3c5 5* 5045 407 364
c5c6 6 5583 695 517

Table 3: Decomposition of the datasets available to train the Deep-Person-ReID.

4.4 Model 2 (Input mask modification)

Model 1 produces decent results colour-wise but the images tend to be blurry and
often have missing limbs. With the aim of improving the shape of the people in the
generated images, an additional mask of the input image was added to the input.
Examples of masks are shown in figure 12. The masks used [27] have already been
created for all images in Market1501. Each mask was added as an additional channel
with the input image. Instead of just the three colour channels (red, green and blue),
the input consisted of four channels: red, green, blue and the mask. To implement
this change the GAN architecture had to be slightly modified. Note that both the
generator and the discriminator have to be modified. Importantly, the output was
not changed, meaning that a mask is not generated for the output but only the red,
green and blue colour channels.

The implementation involved concatenating the mask (1 x 256 x 256) with the
input image (3 x 256 x 256) to make the new input (4 x 256 x 256). Code snippet
1 in Appendix A shows how the mask is found using the name of the input image
and how it is concatenated.
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4.5 Model 3 (Input and output mask modification)

To achieve a clearer (less blurry) and more varied output, two additional input
channels are added to the input image, similar to the input mask modification for
model 2. The two input channels consist of two different masks. The first is the
mask of the input image, just like model 2, and the second is the mask of the output
image. Figure 13 shows all the input channels. By including the output mask with
the input image accomplishes two things, mainly the output becomes clearer as the
generator knows where the person will be and no longer needs to guess. The output
will also be more varied as the output mask determines the pose of the person in
the generated image.

Similarly to section 4.4, the two masks are concatenated to the input as shown
in code snippet 2 in Appendix A.

4.6 Foreground and Background Loss

The previous methods have all lacked precise control over the similarity between the
input image and the generated image. To introduce this control, a modification of
the loss function is proposed and tested. Pix2pix consists of two losses, referred to
as the cGAN loss (LcGAN) and the L1 loss (LL1). The cGAN loss is feedback from
the discriminator, while the L1 loss is the loss between the generated output and
the real output. More specifically:

LcGAN(G,D) = Ex,y[log(D(x, y))] + Ex,z[log(1−D(x,G(x, z)))] (3)

LL1(G) = Ex,y,z[||y −G(x, z)||1] (4)

Making the final objective:

G∗ argmin
G

max
D

= LcGAN(G,D) + λLL1(G) (5)

The proposed method introduces a restriction on the cGAN loss and replaces the
L1 loss with two similar losses, a foreground loss (Lforeground(G)) and a background
loss (Lbackground(G)). There are two variations of the proposed method, static if
the generated person should have same pose as the person in the input image and
variable if the generated person should have a different pose to that of the person
in the output image.

The static version does not require any masks to be concatenated with the input
but utilises the mask of the input image (min) and the mask of the target image
(mout) when calculating the loss during training. Crucially, the static variation does
not require the training data pairs to have the same identities since the identities
of the target images are not used. This allows the target data to be unlabelled.
Thus, removes a hefty requirement previously limiting this method to be used only
for a labelled target dataset. This is accomplished by removing (via masking out)
the person in the target image (cameraB) and replacing them with the person from
the input image (cameraA), creating a hybrid image. The generated image can be
compared to the hybrid image, with the foreground from the input image and the
background from the target image. More precisely, the foreground loss, using L1 loss,
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only compares the generated foreground with the input foreground by multiplying
both by the input mask. Similarly, the background loss, also L1 loss, only compares
the generated background with the target background (where they overlap), by
multiplying by the inverse of the input mask and the inverse of the target mask. To
prevent the discriminator from "cheating", by detecting a fake image as having the
same foreground as the input image, the foreground is removed from the input to
the discriminator leaving only the background. This process for the static version
is visualised in figure 16.

The static version expressed mathematically:

Lstatic
cGAN(G) = Ex,y[log(D(x∗min ∗mout, y))]+Ex,z[log(1−D(x∗min ∗mout, G(x, z)))]

(6)

Lstatic
foreground(G) = Ex,z[||G(x, z)− x||1 ∗min] (7)

Lstatic
background(G) = Ex,y,z[||G(x, z)− y||1 ∗m−1

in ∗m−1
out] (8)

Where min is the mask of the person in the input image and mout is the mask of the
person in the output image (target image). m−1

in and m−1
out are the inverted input

mask and inverted output mask, respectively, highlighting the background. The
final objective:

G∗ argmin
G

max
D

= Lstatic
cGAN(G,D) + λ1Lstatic

foreground(G) + λ2Lstatic
background(G) (9)

The variable background version does not require any restriction to the cGAN
loss but does require both datasets to be labelled. The foreground loss compares the
generated foreground to the target foreground, as opposed to the input foreground
in the static version. Note the images are multiplied by the output mask instead
of the input mask. The background loss compares the generated background to the
target background by multiplying both by the inverted output mask.

The variable version expressed mathematically:

Lvariable
cGAN (G) = Ex,y[log(D(x, y))] + Ex,z[log(1−D(x,G(x, z)))] (10)

Lvariable
foreground(G) = Ex,z[||G(x, z)− y||1 ∗mout] (11)

Lvariable
background(G) = Ex,y,z[||G(x, z)− y||1 ∗m−1

out] (12)

Making the final objective:

G∗ argmin
G

max
D

= Lvariable
cGAN (G,D) + λ1Lvariable

foreground(G) + λ2Lvariable
background(G) (13)

Lforeground and Lbackground have separate weights associated with them, which
in turn allows for significant control over the importance of the similarity of the

24



generated identity and the original identity versus the realism of the background
transformation. For example, a large weight for the foreground loss will result
in the generator to focus on producing a visually similar person as the person in
the input image while the background has little importance. A large weight for the
background loss will have the opposite effect, with little importance on the similarity
of the identity and the main focus on the background transformation.

An additional benefit of having a separate foreground and background loss is the
ability to compare the generated image to a target foreground and background not
in the same image. In other words, the generated foreground can be compared to a
foreground from a target image whereas the generated background can be compared
to a background from another target image.

Due to resource limitations only the static variation has been implemented. Part
of the implementation of the static method can be seen in code snippet 3.
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Inverted
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Real
cameraA
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Figure 16: Diagram of the foreground loss and the background loss, specifically the
static variation.

4.7 Model 4 (Foreground and background loss)

Model 4 implements the static version of the proposed loss function. This means the
foreground loss compares the foreground of the generated image with the foreground
of the input image. The generated person will not however be identical to the input
person as the style is changed to the target dataset due to the GAN loss. The
architecture of model 4 can be seen in figure 14.

Unlike the other models, model 4 does not require the target dataset to be
labelled which means, the image pairs the GAN trains on are not of the same
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identity. In the extreme, one source image can be individually paired with each
image in the target dataset. The number of image pairs to be made for each source
image can be treated as a hyperparameter that would need to be optimised.

For model 4, 10 image pairs are created for each source image. Model 4 is
trained with the same hyperparameters as the previous models except the batch
size is 32. The batch size is increased as there are more training samples for model
4. The weights of the foreground loss and background loss are set to 70 and 30,
respectively.
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5 Testing
The aim of this project is to generate new hard cases to improve the robustness
of current re-ID systems. Specifically, generate new backgrounds for images to
extend current person re-ID datasets to improve the robustness of current re-ID
systems. The generated background should be realistic. There is no consistent way
to quantify how realistic an image (or background) is, as it depends on people’s
opinion. Evaluating the accuracy and robustness of person re-ID models trained on
these images can, however, be quantified.

The testing procedure for person re-ID models consists of multiple comparisons
between a query image and gallery images. Both query and gallery images have
been cropped to only include the full body of one person each. For each query
image, a ranked list of the gallery images is created based on the likelihood of them
containing the same identity.

A rank-1 accuracy indicates how often the first image in the model’s ranked
lists contained the same identity as the query image. Similarly, rank-5 and rank-10
accuracies indicate how often an image of the correct identity was placed in the first
5 or 10 places in the ranked lists, respectively.

The main evaluation of the proposed background GAN consists of comparing the
results of a person re-ID network trained on several untouched datasets to the results
of the same person re-ID network trained on the same datasets with additional
generated images from the GAN. This can be split into three experiments, each
with its own baseline. Note, the baselines only differ by the training data.

The person re-ID network architecture and hyperparameters are kept the same
for all the experiments. The person re-ID network used is implemented using the
deep-person-reID [31] library with the following parameters:

• Loss: softmax
• Architecture: resnet50 [6]
• Optimiser: Adam [30]
• Learning rate: 0.0003
• label-smooth
• Step-size: 20, 40
• Batch-size: 32
• Epochs: 60
• Random seed: 0

Baseline - one camera, the simplest baseline, is trained only on images from
a single camera. This camera is sometimes referred to as cameraA or the source
camera. The baseline itself is referred to as baselinec1 when trained on images from
camera 1, baselinec2 when trained on images from camera 2, and so on. Table 4
shows the performance of the baselines of each camera.

Baseline - two cameras, is trained on images from two cameras, the source
camera (cameraA) and the target camera (cameraB). The baseline is referred to as
baselinec1c2 when trained on images from camera 1 and camera 2, and so on. Multiple
baselines exist but table 5 shows the baselines for the camera pairs that produce the
largest training dataset for each camera. The size of the training dataset of each
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camera pair can be seen in table 2. These baselines provide the best experiment
as each camera pair is a fully functioning person re-ID dataset, but each dataset
contains only two cameras out of six. This is important because each person re-
ID model is tested on the test dataset which contains all six cameras. Thus, the
performance greatly depends on the robustness of each person re-ID model. In other
words, comparing the baselinec1c2 with the same person re-ID model, but trained
on c1c2 plus generated images, will show if the generates images help improve the
overall accuracy and robustness.

Baseline - all cameras, the most advanced baseline, is trained on the whole
Market1501 dataset (all six cameras). Referred to as baselineall-cameras. The per-
formance of this baseline is shown in table 6.

The testing procedure for the person re-ID network is kept the same for each
experiment. This is the default test which, calculates the mean average precision
(mAP) and rank accuracies for the Market1501 test dataset. The mAP equation:

mAP =

∑Q
q=1AveP (q)

Q
(14)

Where Q is the number of queries.

Baseline: c1 c2 c3 c4 c5 c6
mAP 14.2% 12.6% 15.4% 13.8% 16.9% 13.7%
Rank 1 31.2% 30.1% 33.5% 33.1% 37.1% 31.9%
Rank 5 47.0% 45.6% 48.7% 49.5% 53.5% 48.5%
Rank 10 54.8% 53.4% 54.9% 57.7% 60.8% 56.5%
Rank 20 61.6% 60.7% 61.2% 64.7% 67.3% 64.5%

Table 4: The baseline person re-ID network trained on only one camera. Each
column represents the baseline for an individual camera, where c1 refers to camera
1 and so on. The baselines are tested on the same testing dataset which includes all
cameras.

Baseline: c1c6 c2c3 c3c6 c1c4 c3c5 c5c6
mAP 34.8% 29.7% 36.4% 19.2% 23.4% 35.4%
Rank 1 57.6% 55.1% 57.5% 40.9% 46.0% 56.1%
Rank 5 74.9% 68.3% 72.4% 57.7% 59.7% 73.3%
Rank 10 80.6% 73.8% 79.1% 64.1% 66.1% 80.1%
Rank 20 86.2% 78.8% 84.7% 69.2% 71.7% 85.9%

Table 5: The baseline person re-ID network trained on selective camera pairs. Each
column represents the baseline for a camera pair, where c1c6 refers to the camera 1
and camera 6 pair, and so on. The baselines are tested on the same testing dataset
which includes all cameras.
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Baseline: c_all
mAP 68.6%
Rank 1 85.1%
Rank 5 94.2%
Rank 10 96.2%
Rank 20 97.8%

Table 6: The baseline person re-ID network trained on the whole training dataset,
which includes all cameras. The baseline is tested on the testing dataset which
includes all cameras.
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6 Results
All experiments were conducted on the Market1501 dataset or sub-datasets unless
otherwise specified. Note, the hyperparameters used and the testing procedures are
discussed in chapter 5.

6.1 Image comparison and quality assessment

Each model is trained using a camera pair, cameraA and cameraB, to generate
images in the style of cameraB. In Market1501, there are a total of 6 cameras. To
generate images in the style of each camera the largest camera pair dataset, shown
in table 2, is chosen. The largest camera pair dataset is between camera 5 and
camera 6 (c5c6) and should produce the best results and thus the best comparison
between the proposed models. This means, images from camera 5 (cameraA) and
camera 6 (cameraB) are used to train each model to generate images in the style of
camera 6 (cameraB).

Figure 17 shows examples of generated images from each model. The generated
images on the left are examples when the models struggle, while the generated
images on the right are of higher quality.

Model 1 generates images with distinguishable foregrounds and backgrounds
from only an input image. The person generated is quite blurry and occasionally
has missing limbs. The pose and shape vary little between the generated images,
most often a direct front or back view with arms to each side. Distinct features such
as patterns on clothes and body shape are often lost. The colours generated are
slightly different to the original but consistent with the style of the target images.
For example, the images from camera 6 are more saturated than those from camera
5, and the model successfully captures this. The background generated has minimal
noise and varies greatly. Both light and dark backgrounds are generated with dis-
tinctive features such as stairs or walls. These features are common in images from
camera 6 but not in camera 5, which shows this model not only ignores the back-
ground from the original image but also captures and produces these features that
match the background of the target camera. The stairs or lines in the background
often match on both sides of the person which is very realistic.

Overall model 1 most often generates the same shape, an average person with
a direct front or back view, but in the same colour scheme as the original identity.
This happens because the function, which the model is learning, is a multivalued
function, in contrast to a single-valued function. This means an input image from
cameraA does not correspond to a single image in cameraB, but instead corresponds
to an infinite amount of hypothetical cameraB images. However, during training
the L1 loss does not take this into account but rather compares the input image
(cameraA) to a specific target image (cameraB). This causes the GAN to generate
the person in the most common shape and pose to minimise the loss.

Model 2 uses the mask of the input image, in addition to the input image
itself, when generating a new image. This is to help the model detect the person in
the input image more easily thus improve the generation of limbs. Comparing the
images from model 2 and model 1, in figure 17, shows that model 2 does produce
more defined limbs. However, model 2 has similar shortcomings when it comes to
small details and patterns on clothes. Some fine details are produced, for example,
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Original Model 1 Model 2 Model 3 Model 4 Original Model 1 Model 2 Model 3 Model 4

Figure 17: The images on the left are examples of when the models struggle when
generating images while the images on the right are of higher quality. "Original"
are real images from camera 5. The "model" columns show generated images in
the style of camera 6, using the original as input. The images at the bottom are
examples of real images from camera 6.
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backpack straps that are not visible in images from model 1. The colours of the
pants are slightly darker and more realistic than those from model 1 but sometimes
additional noise (dark patches) appear on the shirt. Model 2 produces very similar
backgrounds to model 1 in terms of the visible details and overall realism.

Model 3 improves upon the previous models especially by producing more var-
ied output poses and defining body shapes. The generated pose depends on an
additional input, the output mask, which is chosen at random. Thus, from a single
input image, multiple different output images can be produced, described in more
detail in section 6.7. Small details and patterns in the foreground are often lost,
the same as the previous model. The background maintains the same realism and
quality compared to the previous models. As the people in the generated images
have specific and real poses, the overall image realism is improved.

Model 4, with a modified loss function, generates images with much greater
detail than the other models. The generated foreground is very similar to the original
foreground and importantly includes small details and patterns. The differences
are subtle, slight changes in exposure, colour and colour saturation is expected as
these settings differ between cameraA and cameraB. The generated background often
includes details such as stairs or walls, but the background tends to split between
the left and right side of the foreground. As in the background on the left side does
not always correlate to the background on the right. For example, the backgrounds
in cameraB can be very dark or bright. The generated images occasionally produce
a bright background on one side but a dark background on the other side. This
does happen in some real cameraB images but less frequently than in those from
model 4. This abnormality can be described as a continuity split in the background.
The cause of which can be attributed to a "gap" in the loss function, between the
foreground loss and background loss. The part of the generated image in the "gap" is
only covered by the GAN loss. The results suggest that the weights for the different
losses need to be changed, most likely increasing the weighting of the GAN loss.
Overall, model 4 produces very realistic people that stay true to the person in the
original image. However, the generated backgrounds are slightly less realistic than
those from the previous models due to the aforementioned continuity split.

6.2 Nearest neighbour of generated images

Given a real image from camera 5, each model can generate an image in the style
of camera 6 but with the same identity as the original image. To show that these
generated images truly capture the original identity, a k-nearest neighbour search
is done on each of the images. Figure 18 shows the result of this experiment.
First, the original image is tested to show that it contains the required features
to correctly match with images with the same identity. Figure 18 clearly shows that
the generated images from model 1, model 3 and model 4 represent the same identity
as the original image. However, the image generated by model 2 does not match with
the correct identity but rather a similarly dress individual. Under closer inspection,
the generated person in the model 3 image has what could be misinterpreted as
backpack straps over the shoulders. This detail could have caused the mismatch
even though the skin tone of the generated person is more similar to the original
identity than the similarly dressed individual.
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Figure 18: Nearest neighbours for the output for each model. Green outline signifies
the correct identity while a red outline signifies an incorrect identity.
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6.3 Generating images for one camera

Each of the proposed models is trained on the c5c6 training dataset to generate
images in the style of camera 6, from images in camera 5. Using a set of images
from camera 5, each model generates images in the style of camera 6, referred to as
G6. The baseline person re-ID model is trained on a dataset, composed of images
from camera 5 and the generated images from a single model, known as c5+G6.
Table 7 shows the performance of baselinec5 and the performance of the baseline
person re-ID trained on c5+G6 from each model. Each model’s generated images
help improve over baselinec5, while model 4 allows for the greatest improvement.
The improvement by using the generated images shows that the models can generate
images with the same identity as the original images but in the style of the target
camera.

Model Baseline Model 1 Model 2 Model 3 Model 4
GAN
training data - c5c6 c5c6 c5c6 c5c6 (unlabelled)

Person re-ID
training data c5 c5+G6 c5+G6 c5+G6 c5+G6

mAP 16.9% 19.7% 18.6% 18.1% 20.7%
Rank-1 37.1% 39.8% 39.2% 37.8% 43.2%
Rank-5 53.5% 57.9% 56.0% 55.2% 62.6%
Rank-10 60.8% 65.5% 63.6% 63.9% 69.9%
Rank-20 67.3% 72.6% 71.7% 71.6% 77.2%

Table 7: The performance of the baseline person re-ID model based on the training
data. Best results are in bold. Model 4 is trained on labelled images from camera 5
but unlabelled images from camera 6, while the other models are trained on labelled
images from both cameras.

6.4 Extending a person re-ID dataset

The same as the previous experiment, each proposed model is trained on the c5c6
train dataset. Models 1, 2 and 3 require labelled images from both camera 5 and
camera 6. The c5c6 test dataset only contains images from camera 5 where the
same identity, in the same sequence, does not appear in any camera 6 image. The
decomposition of c5c6 can be seen in table 3. Models 1, 2 and 3 use the c5c6 testing
dataset to generate the images for camera 6 to create G6. Model 4 does not require
the target camera to be labelled thus is trained using the whole c5c6 dataset. Model
4 generates a new image in the style of camera 6 for each image from camera 5. This
means models 1, 2 and 3 generate 695 images (G6) each, while model 4 generates
3245 images (G6). The number of generated images used to extend the original
dataset can have an effect on the quality of the dataset and thus the performance.
Adding a just few images might not have an effect on the performance but too many
images can negatively effect the performance by corrupting the dataset. The number
of generated images added to the original dataset can be considered a hyperpara-
meter that can be optimesed, but no optimisation has been done. Table 8 shows
the performance of person re-ID models when trained on datasets extended using
generated images. Model 3 performs the best, with the same mAP as baselinec5c6
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but a higher rank-1, rank-5 and rank-10 accuracy. Model 4 has the best rank-5
accuracy, with rank-1 and rank-10 also better than baselinec5c6. Model 1 and model
2 do not improve on the baseline. Model 2 has the worst performance.

Similar experiments are conducted for the datasets c2c3 and c3c6, both extended
by model 4. Table 9 shows how the extended dataset can significantly improve the
performance of person re-ID networks. This is also visualised in figure 19. Note,
further performance improvements are most likely possible as none of the proposed
models have been optimised.

Model Baseline Model 1 Model 2 Model 3 Model 4
GAN
training data - c5c6 c5c6 c5c6 c5c6 (unlabelled)

Person re-ID
training data c5c6 c5c6+G6 c5c6+G6 c5c6+G6 c5c6+G6

mAP 35.4% 34.3% 33.9% 35.4% 34.9%
Rank-1 56.1% 55.3% 54.8% 56.8% 56.4%
Rank-5 73.3% 73.5% 71.4% 73.6% 74.5%
Rank-10 80.1% 79.6% 79.5% 80.8% 80.3%
Rank-20 85.9% 84.9% 85.1% 86.5% 85.3%

Table 8: The performance of the baseline person re-ID model using different training
data. Best results are in bold. Model 3 and model 4 have a higher rank-1, rank-5
and rank-10 accuracy than the baseline. Model 4 is trained on labelled images from
camera 5 but unlabelled images from camera 6, while the other models are trained
on labelled images from both cameras.

Model Baselinec2c3 Model 4 Baselinec3c6 Model 4
GAN
training data - c2c3 (unlabelled) - c3c6 (unlabelled)

Person re-ID
training data c2c3 c2c3+G2 c3c6 c3c6+G3

mAP 29.7% 31.7% 36.4% 38.1%
Rank-1 55.1% 56.3% 57.5% 58.9%
Rank-5 68.3% 70.3% 72.4% 75.6%
Rank-10 73.8% 75.4% 79.1% 81.7%
Rank-20 78.8% 80.0% 84.7% 86.1%

Table 9: The performance of the baseline person re-ID model using different training
data. Best results are in bold. Model 4 does not require the target dataset to be
labelled.
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Figure 19: Performance of a person re-ID network trained on different datasets. (a)
trained on c2c3 and c2c3+G2. (b) trained on c3c6 and c3c6+G3.

6.5 Extending a large person re-ID dataset

The previous experiment consisted of extending a person re-ID dataset by adding
generated images in the style of just one camera. For larger datasets, generated
images for each camera, individually, could extend the original dataset and thus im-
prove the performance of person re-ID networks. Model 1 is trained on the largest
camera pair training dataset to generate images in the style of each camera individu-
ally. The training sets used are listed in table 3. With each set of generated images,
G1 to G6, only the ones which improve on their respective camera pair baseline are
used to extend the dataset. This results in only G3 and G5 from model 1 to be
used to extend the dataset. The same is done for model 3 which results in only
G6 to be used. Again, for Model 4, which results in using G2 and G3. Note that
for model 4, G4 and G1 were not generated due to resource limitations. Model 2
was omitted entirely due to resource limitations. Table 10 shows the performance
of the baseline person re-ID model when trained on the original dataset and the
different extended versions, visualised in figure 20. None of the models improve
on the baselineall-cameras, with only model 3 achieving the same rank-10 accuracy as
the baseline. This is expected as baselineall-cameras already performs very well and
the proposed models have not been optimised. Given the results from the previous
experiment, the performance of the person re-ID network trained on the extended
datasets would most likely improve if the proposed models are optimised.

Model Baseline Model 1 Model 3 Model 4
Person re-ID
training data c_all c_all+G3+G5 c_all+G6 c_all+G2+G3

mAP 68.6% 67.6% 67.8% 65.5%
Rank-1 85.1% 85.0% 84.9% 83.3%
Rank-5 94.2% 93.6% 93.9% 93.0%
Rank-10 96.2% 95.5% 96.2% 95.1%
Rank-20 97.8% 97.1% 97.6% 97.0%

Table 10: The performance of the baseline person re-ID model using different
training data. Best results are in bold. Only the generated images which improved
on their respective camera pair baseline are used to extend the dataset.
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Figure 20: Performance of a person re-ID network trained on all cameras and ex-
tended variations.

6.6 Domain transfer from labelled to unlabelled datasets

Model 4 utilises the proposed foreground and background loss, specifically the static
version, which does not require the target dataset to be labelled. This allows model
4 to extend a dataset using an unlabelled dataset. For example, given a labelled
dataset only with images from camera 6, a person re-ID network can be trained using
this data resulting with baselinec6. Now, camera 3 is installed and images recorded
but the images are not labelled as that requires significant manual labour. If the
images from camera 3 would be labelled, baselinec3c6 could be created. Training
model 4 on the labelled images from camera 6 and the unlabelled images from
camera 3, allows model 4 to generate labelled images, using the identities from
camera 6, in the style of camera 3. These images are referred to as G3. Table
11 shows the performance of baselinec3c6, baselinec6 and the person re-ID network
trained on c6+G3. Table 12 shows a similar situation but with different cameras.
Both examples show a significant performance improvement when the person re-
ID network trained on model 4’s extended dataset over the single camera baseline.
Note, the performance re-ID performance when using the extended dataset could
most likely be improved as model 4 has not been optimised.

Model baselinec3c6 baselinec6 Model 4
GAN
training data - - c3c6 (unlabelled)

Person re-ID
training data c3c6 c6 c6+G3

mAP 36.4% 13.7% 20.1%
Rank-1 57.5% 31.9% 40.7%
Rank-5 72.4% 48.5% 59.0%
Rank-10 79.1% 56.5% 67.0%
Rank-20 84.7% 64.5% 74.6%

Table 11: Baselinec3c6 shows the performance of the person re-ID network trained
on real images from camera 3 and real images from camera 6. Baselinec6 shows
the re-ID performance when only real images from camera 6 are used. Model 4 is
trained on labelled images from camera 6 but unlabelled images from camera 3.
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Model baselinec2c3 baselinec3 Model 4
GAN
training data - - c2c3 (unlabelled)

Person re-ID
training data c2c3 c3 c3+G2

mAP 29.7% 15.4% 24.2%
Rank-1 55.1% 33.5% 47.3%
Rank-5 68.3% 48.7% 63.3%
Rank-10 73.8% 54.9% 69.4%
Rank-20 78.8% 61.2% 75.6%

Table 12: Baselinec2c3 shows the performance of the person re-ID network trained
on real images from camera 2 and real images from camera 3. Baselinec3 shows
the re-ID performance when only real images from camera 3 are used. Model 4 is
trained on labelled images from camera 3 but unlabelled images from camera 2.

6.7 Pose generation

The architecture of model 3 provides the ability to control the pose of the person in
the generated image. Figure 21 shows the effect of keeping the input image constant
but changing the target mask. The foreground is successfully generated in the same
shape as the target mask, but small details are lost as the generated person is quite
blurry. In the second example, the red shoes are not generated correctly, with only
the right shoe in two images being slightly red. This might be caused by a lack
of training samples with coloured shoes. The generated backgrounds vary greatly,
and often include details such as stairs or walls. The ability to control the pose has
many benefits, most importantly, the distribution of pose variation can be adjusted,
and multiple different images can be generated from a single input image.

Original Pose Gen Pose Gen Pose Gen Pose Gen Pose Gen

Original Pose Gen Pose Gen Pose Gen Pose Gen Pose Gen

Figure 21: Examples of the varying output from model 3 depending on the target
mask. "Gen" is the generated image, in the style of images from camera 6, given
the "original", from camera 5, and the corresponding "pose" as input.
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7 Evaluation
At the start of this project several objectives were set out to accomplish the main
aim of this project, which is to generate new, hard cases to improve the robustness
of current re-ID systems. Four models are proposed in this project, tackling different
aspects of the objectives.

Model 1 can generate labelled images of existing persons with new backgrounds.
However, as discussed in section 6.1, while the generated backgrounds are decent,
the generated persons are blurry and lack details and patterns on clothes that the
original identity has. Due to the lack of detail on the generated person, an argu-
ment can be made that model 1 does not achieve the desired objective of generating
labelled images of existing persons. But despite the perceived lack of detail, results
discussed in section 6.2 indicate that the generated images from model 1 include suf-
ficient details to be classified as the same identity as the original image. Thus model
1 can be classified as achieving the objective to generate labelled images of existing
persons with new backgrounds. As the generated images are correctly labelled, as
it matches the original identity, and also capture the style of the target dataset as
shown in 6.3, the images can be used to extend the original dataset, thus achieving
its second objective. Training the person re-ID network on the extended dataset
gives mixed results. Importantly, for some datasets the extended version allows the
re-ID network to perform better than the baseline, as shown in the appendix in table
13. This is despite the model not being optimised. With optimisation, the perform-
ance would most likely improve. Even without optimisation, object of to improve
on the person re-ID network baseline by using the extended dataset is achieved.

Model 2 was designed to be an improvement over model 1. As discussed in
section 6.1, model 2 generates images very similar to that of model 1. The gen-
erated images have more defined limbs than those from model 1 but with small
additional artefacts. However, the results discussed in section 6.2 do not indicate
that the generated images from model 2 include sufficient details to be classified as
the same identity as the original image. This means that model 2 does not achieve
its objective.

Model 3 was designed to generate labelled images of existing persons with new
poses. The quality of the generated images is better than images from the previous
models, as discussed in section 6.1 and the images include sufficient details to be
classified as the same identity as the original image, as shown in section 6.2. The pose
of the person can be controlled as shown in section 6.7. Importantly, the generated
images capture the style of the target dataset as shown in section 6.3. This was not
part of the objective regarding the pose changes. Due to the clever design of model 3
it achieves both the objective for generating labelled images of existing persons with
new poses, and the objective to generate labelled images of existing persons with
new backgrounds. The generated images can be used to extend the original dataset.
A person re-ID network trained on the extended dataset does not improve on the
baseline, as their performance are very similar. As with the other models, model 3
has not been optimised and the results would likely improve with optimisation.

The quality of the generated images is directly comparable to the state-of-the-art
methods such as Pose Transfer [16]. Examples of Pose Transfer and model 3 images
are shown in figure 22. Pose Transfer generates the person in the same style, but
the generated backgrounds contain obvious artefacts. Model 3 however, does change
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the style of the image and generates realistic backgrounds. The style change can
even be compared to state-of-the-art methods such as CamStyle [14].

Model 4 utilises the novel foreground and background loss, specifically the static
version, to generate images with the same identity as the original image but with a
new background. The generated persons are of very high quality which successfully
captures sufficient details to be classified as the same identity as the original image,
as shown in 6.2. The generated images also capture the style of the target camera,
as shown in section 6.3. This means the original dataset can be extended using the
generated images. A person re-ID network trained on the extended can improve
significantly on the baseline as shown in section 6.4. Thus, three objectives are
achieved, labelled images of existing persons with new backgrounds are generated,
a person re-ID dataset is extended, and the person re-ID network trained on the
extended dataset improves on the baseline.

Model 4 can generate images that capture the overall style of the target dataset
and also generates the background in the style of the target dataset. Importantly,
model 4 does not need the target dataset to be labelled, thus can be compared to
SPGAN [12]. SPGAN does not change the background of the images but the overall
style. As model 4 changes the style and the background, model 4 could theoretically
improve on SPGAN.

Overall, all the objectives have been met and the proposed solutions are com-
parable to state-of-the-art methods, and even have additional benefits.
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Figure 22: Examples of the generated output from model 3 and Pose Transfer [16].
The "Original" is used to generated the two "Gen" images. Model 3 also changes
the style of the image so an example of the same identity in the target dataset is
shown for comparison as "Target".
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8 Conclusion and Further Work
Person re-ID is a difficult problem which involves identifying the same person across
multiple disjoint cameras. The difficulty of achieving high person re-ID accuracy is
caused by multiple factors such as non-overlapping field of view, lighting differences,
occlusion, variation in poses and different camera viewpoints. The images are often
of low quality and low resolution so biometric markers such as facial features cannot
be used.

There are multiple use cases for person re-ID models, for example, surveillance
and tracking by police, or general data gathering by businesses such as supermarkets
or malls. A very high accuracy and robust person re-ID model could be used in places
such as the London Underground to remove the need to “tap out” to indicate where
person exited the system. The current state-of-the-art person re-ID methods can
achieve high accuracies on some specific datasets but due to the lack of robustness,
experience a significant drop in performance when tested on a different dataset.

This project proposes and analyses several different methods to improve the ro-
bustness of person re-ID networks. Each of the proposed methods are designed to
generate new, hard cases which can be used to extend a person re-ID dataset. Train-
ing existing person re-ID networks using the dataset extended with the generated
images, allows for higher accuracy and increased robustness. This is a non-trivial
problem as the generated images are required to be labelled for supervised learning
to be possible.

Model 1 is designed to generate labelled images of existing persons with new
backgrounds in the style of a target dataset. It requires both the source dataset and
the target dataset to be labelled and contain the same identities. Model 1 proved
to be effective at improving the robustness of person re-ID networks.

Model 2, an attempt to improve on model 1, proved to be unsuccessful as the
quality of the generated images was below what is required.

Model 3 was also proposed as an improvement on model 1. It is designed to
generate labelled images of existing persons with new poses, in the style of the
target dataset. It successfully generates labelled images with the person in the
desired pose. It performs better than model 1 and also includes additional features
which makes it superior.

A novel loss function was proposed and implemented in model 4. It allows model
4 to generate much more realistic persons compared to the other methods. With the
new loss function, model 4 does not require both the source dataset and the target
dataset to be labelled and contain the same identities. Only the source dataset
needs to be labelled. Removing the requirement of a labelled target dataset allows
model 4 to be much more versatile and useful. It can create labelled dataset in the
style of an unlabelled dataset using any existing labelled dataset.

Overall, the project presents two viable methods to improve person re-ID net-
works. The first is model 3 which, based on the quality of the generated images can
be compared to state-of-the-art methods regarding pose transfer for person re-ID
images. In addition, the generated images form model 3 also changes the style of the
image and generates realistic backgrounds to match the target dataset. The other
viable method is model 4, which is directly comparable to state-of-the-art methods
regarding image style changes for person re-ID images. Model 4 can theoretically
improve on some of these state-of-the-art methods, as model 4 also changes the
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background and not just the style.
The models presented have not been optimised in any significant way. Future

work requires optimising the models, for example by performing a hyperparameter
search. With the optimised models, a qualitative comparison with state-of-the-
art methods can be made. In addition, implementing the variable version of the
proposed loss would be very interesting as it has similar control over the foreground
and background generation as model 4 but can also control the pose of the generated
person like model 3.
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Appendix A Code

# get input mask
if self.input_nc == 4: # If 4 input channels then find and concatenate the mask

# path to the input mask
M_path = "./datasets/mask/bounding_box_train_seg/"+AB_path.rpartition('train/')[2]
M_path = M_path.rpartition('+')[0]+".jpg"
# retrieving the input mask
M = Image.open(M_path).convert('RGB')

# Append the mask to the input image
A = torch.cat((A, M[0][None, :, :]), 0)

Code Snippet 1: Simplified code of how the input mask is found and concatenated.

# get input and output masks
if self.input_nc == 5: # If 5 input channels then find and concatenate the input and output masks

# path to the input mask (Mi)
Mi_path = "./datasets/mask/bounding_box_train_seg/"+AB_path.rpartition('test/')[2]
Mi_path = Mi_path.rpartition('+')[0]+".jpg"
# path to the output mask (Mo)
Mo_path = "./datasets/mask/bounding_box_train_seg/"+AB_path.rpartition('test/')[2]
Mo_path = "./datasets/mask/bounding_box_train_seg/"+Mo_path.rpartition('+')[2]

# retrieving the input mask and output mask
Mi = Image.open(Mi_path).convert('RGB')
Mo = Image.open(Mo_path).convert('RGB')

# Append the input mask to the input image
A = torch.cat((A, Mi[0][None, :, :]), 0)
# Append the output mask to the input image
A = torch.cat((A, Mo[0][None, :, :]), 0)

Code Snippet 2: Simplified code of how the input mask and output mask are found
and concatenated.
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def get_foreground_loss(self): # matching the generated foreground with the target foreground
# get the input mask (Mi)
Mi = self.Mi.clone()
# adjust the mask so that it is 0 for the background and 1 for the foreground
Mi = Mi.add_(1).mul_(0.5)

# multiply the generated image by the input mask to remove the background
self.generatedForeground = self.fake_B[:,0:3] * Mi # generated foreground
# multiply the target image by the input mask to remove the background
self.targetForground = self.real_A[:,0:3] * Mi # target foreground

# get the L1 loss between the generated foreground and the target foreground
# and multiply by a weight
self.loss_G_foreground = self.criterionL1(self.generatedForeground,

self.targetForground) * self.opt.foreground_L1
return self.loss_G_foreground

def get_background_loss(self): # matching the generated background with the target background
# get the input mask (Mi)
Mi = self.Mi.clone()
# invert and adjust the mask so that it is 1 for the background and 0 for the foreground
Mi_inv = Mi.mul_(-0.5).add_(0.5)
# get the output mask (Mo)
Mo = self.Mo.clone()
# invert and adjust the mask so that it is 1 for the background and 0 for the foreground
Mo_inv = Mo.mul_(-0.5).add_(0.5)

# multiply the generated image by the inverted input mask and inverted output mask to
# remove the foreground which only leaves the background that overlaps with the
# target background
self.generatedBackground = self.fake_B[:,0:3] * Mi_inv * Mo_inv # generated background
# multiply the target image by the inverted input mask and inverted output mask to
# remove the foreground which only leaves the background that overlaps with the
# generated background
self.targetBackground = self.real_B[:,0:3] * Mi_inv * Mo_inv # target background

# get the L1 loss between the generated background and the target background
# and multiply by a weight
self.loss_G_background = self.criterionL1(self.generatedBackground,

self.targetBackground) * self.opt.background_L1
return self.loss_G_background

Code Snippet 3: Simplified code of how the foreground and background losses are
calculated (static variation).

A.1 DataSplit script

The DataSplit.py script automatically creates a dataset composed of a camera pair
in the required format for the GAN. To run DataSplit.py the following command
should be called.

python DataSplit.py -A 5 -B 6 -G 6

Code Snippet 4: Creating a dataset containing camera 5 and 6 to use when gener-
ating images for camera 6.

Note the options “-A” and “-B” represent cameraA and cameraB respectively.
Option “-G” choses which camera the GAN will generate images for. Other options
are described in the user guide in section /ref.

The operation of DataSplit.py is twofold. First it creates a folder “A/test” by
copying cameraA images that do not share the same identity and sequence as any
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image from cameraB. These images are later used when testing the GAN. Similarly,
folder “B/test” is created with the same process. This is shown in code snippet 5.

## Creating the test folder for cameraA ##
maskNumber = 0
for i in AllCameraA: # loops through all images from cameraA

match = False
for j in AllCameraB: # loops through all images from cameraB

if i[-23:-18]+i[-16:-14] == j[-23:-18]+j[-16:-14]: #same identity and sequence
match = True

if match == False: # Non-overlapping identities
maskNumber += 1
if maskNumber >= len(AllCameraB): # loops the mask assignment around

maskNumber = 0

# Copy the image and append to the original name a “mask name” to be
# used as the output mask if needed.
os.system("cp "+str(i)+" "+str(args.output)+folderName+"A/test/"+str(i[52:-4])

+"+"+AllCameraB[maskNumber][52:-4]+".jpg")
testANames.append(i[-23:-14]) # stores which images have been used for testing

Code Snippet 5: Simplified code of how the training images are selected. This code
snippet shows the process for cameraA and is very similar for cameraB.

Note the naming scheme, where the training images are now labelled by their
original name and a name for the output mask (also referred to as the target mask).
The output mask represents the desired pose of the person in the generated image.
The input mask represents the pose of the person in the input image. This can be
ignored if an output mask is not wanted during training of the GAN but if required
helps match a specific mask to an image. Also note that no output masks exist
for the identities in the testing images as they never appear in the target camera.
Instead, masks of other identities from the target camera are picked at random.
This creates a few problems as the output mask might not be a good match for a
specific person. For example, transforming a person without a backpack into a pose
of a person with a backpack can be problematic.

The second process involves pairing together the training images. Importantly,
testing images are not used for training as they would corrupt the test results.
The cameraA images are paired together with cameraB images if they have the
same identity and the same sequence. To produce a larger training dataset, each
cameraA image is paired with each cameraB image with the same identity. This is
visualised in figure 11. Code snippet 6 shows how these images are paired.
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## Creating trainA and trainB ##
for i in AllCameraA: # loops through all cameraA images

used_for_testing = False
for k in testANames: # loops through all cameraA testing images

if i[-23:-14] == k: # check if this image is used for testing
used_for_testing = True

if used_for_testing == False: # if not used for testing (thus overlapping identities)
for j in AllCameraB: # loops through all cameraB images

if i[-23:-18]+i[-16:-14] == j[-23:-18]+j[-16:-14]: #same identity and sequence

# Copy the cameraA image to "A/train" and append the cameraB name
# resulting in the name being: cameraA_name+cameraB_name.jpg
os.system("cp "+str(i)+" "+str(args.output)+folderName+"A/train/"+str(i[52:-4])

+"+"+str(j[52:-4])+".jpg")

# Copy the cameraB image to "B/train" and the name must be the same
# as the cameraA copy
os.system("cp "+str(j)+" "+str(args.output)+folderName+"B/train/"+str(i[52:-4])

+"+"+str(j[52:-4])+".jpg")

Code Snippet 6: Simplified code of how the training images are paired together
depending on their ID labels and sequence.

After creating the “A/train”, “B/train”, “A/test” and “B/test” folders, two fi-
nal folders “train” and “test” are created. The “train” folder is composed of either
“A/train” or “B/train” images depending whether cameraA or cameraB images are
being generated. For the “train” folder, images from “A/test” and “B/test” are
merged into a single image file, as this is the required format to train the GAN.

Appendix B Additional results

Model Baselinec5c6 Model 1 Baselinec3c6 Model 1
GAN
training data - c5c6 - c3c6

Person re-ID
training data c5c6 c5c6+G2 c3c6 c3c6+G3

mAP 35.4% 35.4% 36.4% 37.6%
Rank-1 56.1% 57.3% 57.5% 58.7%
Rank-5 73.3% 74.4% 72.4% 74.9%
Rank-10 80.1% 80.8% 79.1% 81.5%
Rank-20 85.9% 85.9% 84.7% 85.5%

Table 13: The performance of the baseline person re-ID model using different
training data. Best results are in bold.

Appendix C Safety, Legal and Ethics

C.1 Safety

This project revolves around programming and thus safety hazards are at a min-
imum. However, precautions need to be made to decrease the chance of comprom-
ising or damaging my own or Imperial’s IT systems. The largest safety concern is
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downloading malicious data from the internet. This means extra care must be taken
when downloading the required datasets. Running code found on the internet can
also be dangerous and must be done with due diligence.

C.2 Legal

The EU General Data Protection Regulation (GDPR) [32] is a regulation protecting
personal data. Using people’s personal data without consent can result in heavy
fines and must be avoided at all costs. The data required for this project includes
personally identifiable images and thus great care must be taken to ensure this data
is acquired legally and conforms to the regulation. The datasets that will be used
in this project are well-known, open and comply with the EU’s GDPR.

Additionally, care must be taken to not infringe on patented or copyrighted
material.

C.3 Ethics

The idea of surveillance and tracking people is an ethical dilemma. One can ar-
gue that surveillance cameras prevent crime and can assist authorities in catching
criminals and bring them to justice. On the other hand, one can argue that sur-
veillance cameras and tracking people is an invasion of privacy, especially as most
people caught in these cameras are innocent. As today’s society heavily relies on
surveillance, this project does not raise any ethical issues.
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